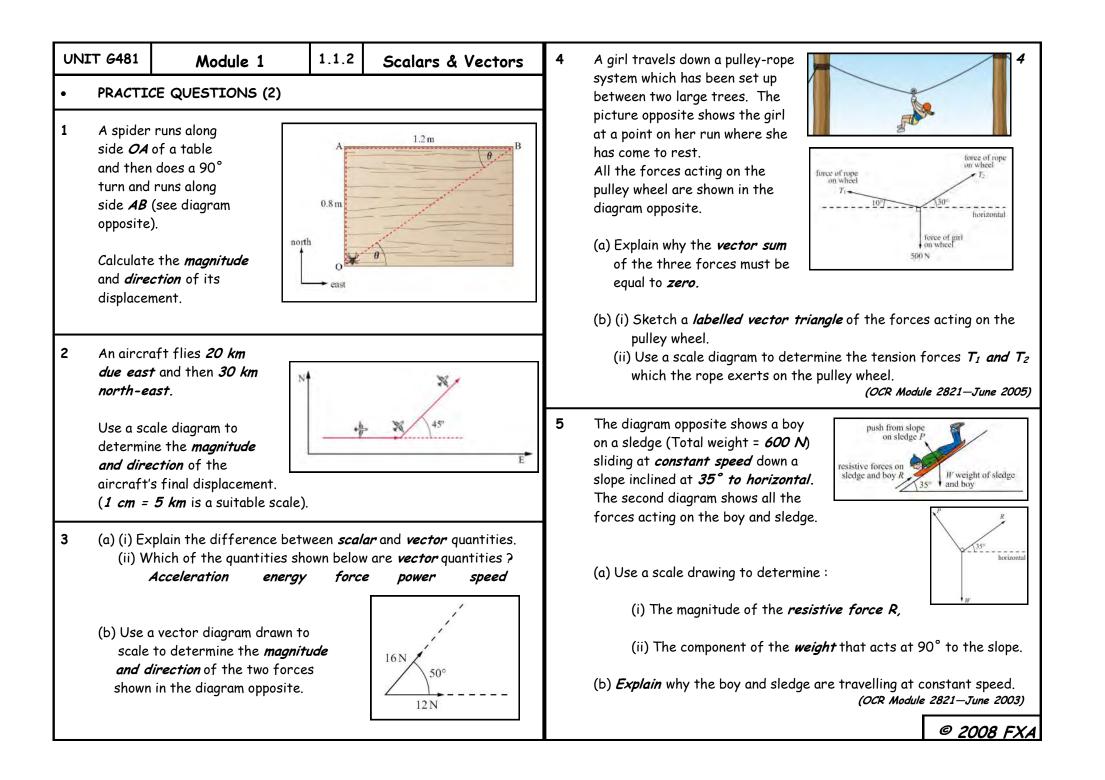
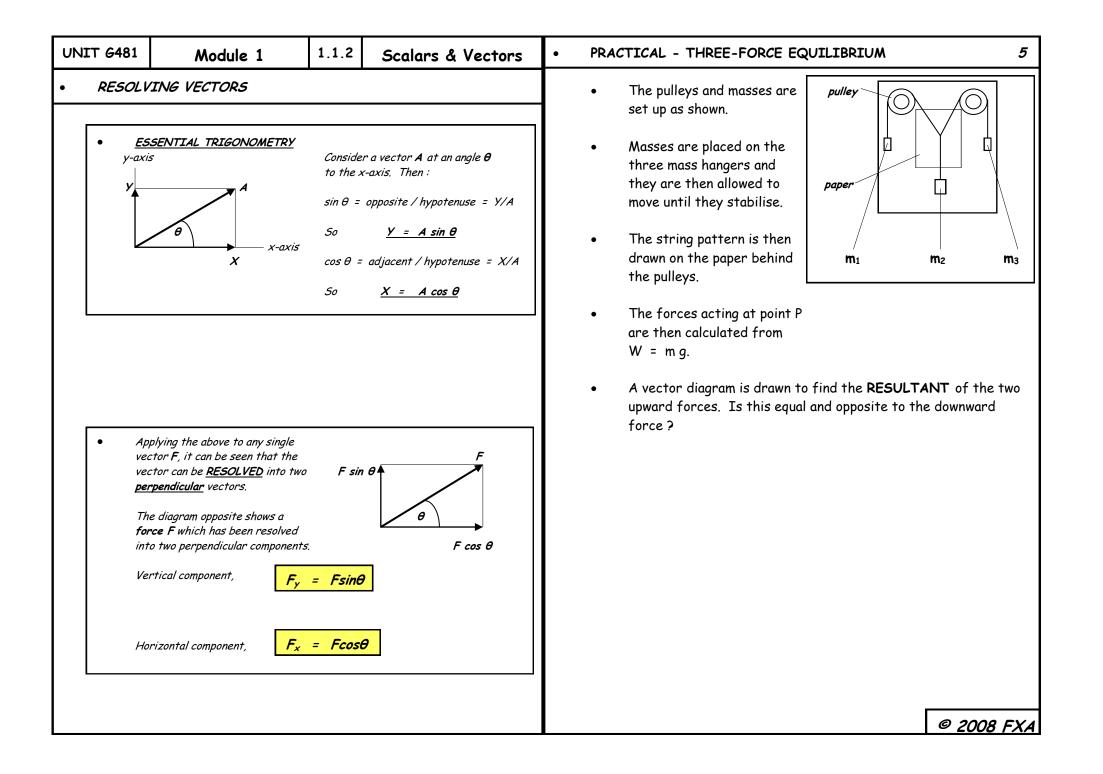
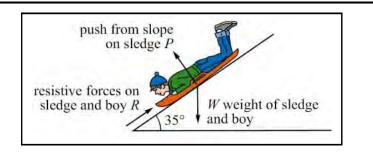

JNIT <i>G</i> 481	Module 1	1.1.2	Scalars & Vectors	•	<u>Examples of Sc</u>	alar and Vector	<u>Quantitie</u> :	5
<u>Candida</u>	tes should be able to :					QUANTITY	VECTOR	SCALAR
• De	• Define scalar and vector quantities and give examples.					length		
						distance		
 Draw and use a vector triangle to determine the resultant of two coplanar vectors, such as displacement, velocity and 						displacement		
	rce.					area		
						volume		
	alculate the resultant of two perpendicular vectors such as single sectors such as single sectors such as single sectors and force.					speed		
		, 0, 00.				velocity		
	solve a vector such as dis	splacemei	ent, velocity and force into			pressure		
	wo perpendicular components.					energy		
<u> </u>		TTTCC				force		
SCALAR	AND VECTOR QUANT	11125				time		
• •	Some physical quantities can be fully defined by specifying their		2			mass		
magnitude with a unit , but others also require their direction to be specified.					acceleration			
						weight		
A VECT	OP quantity is one which	has both	SIZE and DIRECTION.			density		
		nus born				momentum		
A SCAL	.AR quantity is one which	has SIZ	E but no DIREC-			power		
				•	<u>Representing Va</u> A vector quantity The length of the quantity and the	ty may be repres he arrow repres	sented as an ents the ma	gnitude of th
					of the vector qu		-7	Г


© 2008 FXA

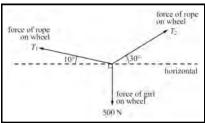

1


UNIT 6481	Module 1	1.1.2	Scalars & Vectors	• <u>Vectors acting at any angle</u> 3
	Draw a vector to repr line which is 3 cm long Then draw the vector (a vertical line which l at the tip of the 15 l The RESULTANT is t	le (In thi resent th g). to repre is 8 cm l N force v the vecto obtained directio	s case say 1 cm = 5 N). e 15 N force (a horizontal esent the 40 N force ong) with its tail starting vector. or which closes the triangle. d by measuring the length	 Scale : 1 cm = 5 N. Scale : 1 cm = 5 N.
				TRIANGLE OF VECTORS. The three forces involved form a closed triangle. Vector addition can be used to solve problems involving more Than three vectors and the method is then called the POLYGON OF VECTORS.

© 2008 FXA

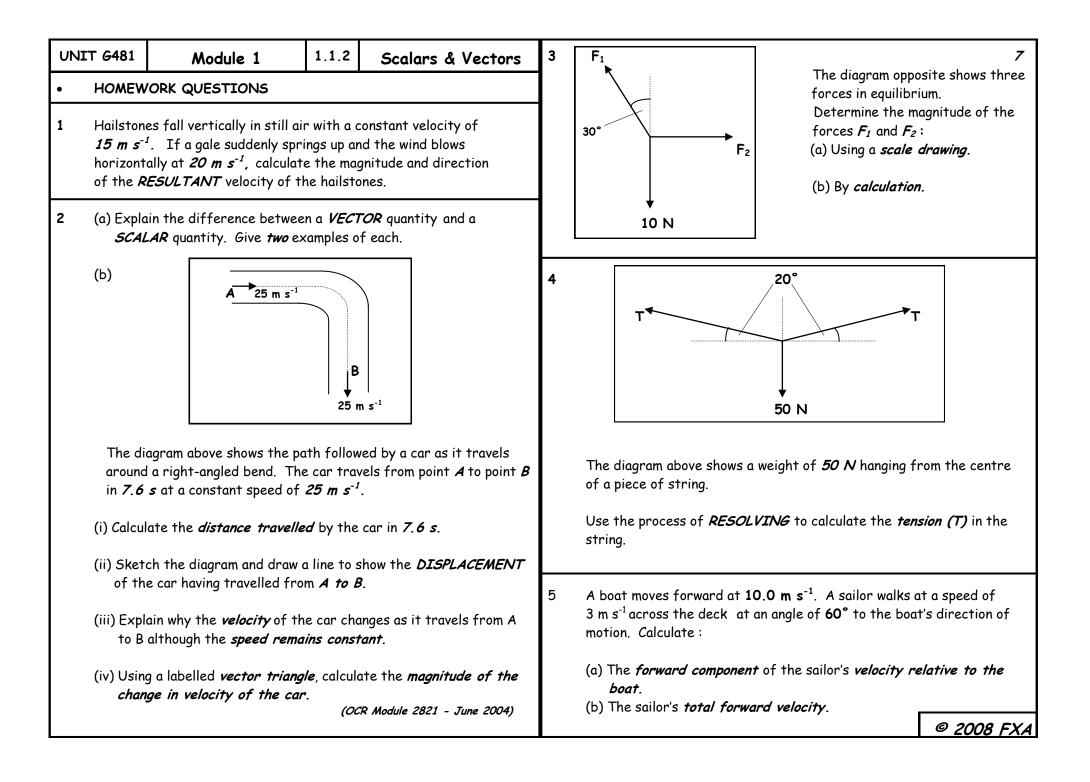
UNIT G48 1		Module 1	1.1.2	Scalars & Vectors	4				
•	PRACTIO	CE QUESTIONS (3)			1				
1	An athlete throws a javelin into the air at an angle of 38° to the <i>horizontal.</i> If the <i>initial horizontal component</i> of the javelin's velocity is 19.7 m s ⁻¹ , calculate :								
	(a) The <i>initial velocity</i> of the javelin.								
	(b) The <i>initial vertical component</i> of the javelin's velocity.								
2		A shell is fired from a gun at 400 m s⁻¹ at an angle of 30° to the horizontal.							
	(a) What is the <i>initial horizontal component</i> of the shell's velocity ?								
	(b) If the shell is in the air for <i>40 s</i> and the ground is horizontal, how far does it land from its original position ? (Assume that air resistance is negligible).								
3	exerted used to r By resolv	ram opposite shows th by three tugs which a nove a floating oil plat ving the forces calcula ANT force on the plat	re being form. te the	Oil platform 30° 200 kN 320 kN 320 kN	5				

The diagram above shows a boy on a sledge (Total weight = 600 N) sliding at *constant speed* down a slope inclined at 35° to horizontal.


By *resolving* the forces acting on the boy and sledge, determine :

- (a) The magnitude of the *RESISTIVE FORCE (R)*.
- (b) The component of the **WEIGHT (W)** that acts perpendicular to the slope. (<u>NOTE</u>: You have already attempted this question by scale drawing)
- A girl travels down a pulley-rope system which has been set up between two large trees. The picture opposite shows the girl at a point on her run where she has come to rest.

All the forces acting on the pulley wheel are shown in the diagram opposite.


By *resolving* the forces acting, determine the tension forces T_1 and T_2 which the rope exerts on the pulley wheel. (NOTE : You have already attempted this question by scale drawing)

© 2008 FXA

6

